

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE MARABÁ FACULDADE DE ENGENHARIA DE MATERIAIS

Estudo de formação de porosidades e bolhas tubulares em tarugos de lingotamento contínuo

DOUGLAS FROZ NETO

Estudo de formação de porosidades e bolhas tubulares em tarugos de lingotamento contínuo

DOUGLAS FROZ NETO

Trabalho de Conclusão de Curso apresentado a Faculdade de Engenharia de Materiais da Universidade Federal do Pará como parte dos pré-requisitos para obtenção do título de Bacharel em Engenharia de Materiais, orientado pelo Prof.º M.Sc. Clesianu Rodrigues Lima.

Dados Internacionais de Catalogação-na-Publicação (CIP) (Biblioteca Josineide da Silva Tavares, Marabá-PA)

Froz Neto, Douglas.

Estudo de formação de porosidades e bolhas tubulares em tarugos de lingotamento contínuo / Douglas Froz $\,$ Neto ; orientador, Clesianu Rodrigues Lima. $\,-$ 2010.

Trabalho de Conclusão de Curso (Graduação) Universidade Federal do Pará, Faculdade de Engenharia de Materiais, 2010.

 $1.\ Metalografia.\ 2.\ Aço-metalografia\ .\ 3.\ Macrografia.\ T\'itulo.$

CDD: 22. ed. 669.95

Estudo de formação de porosidades e bolhas tubulares em tarugos de lingotamento contínuo

Trabalho de Conclusão de Curso apresentado a Faculdade de Engenharia de Materiais da Universidade Federal do Pará como parte dos pré-requisitos para obtenção do título de Bacharel em Engenharia de Materiais, orientado pelo Prof.º M.Sc. Clesianu Rodrigues Lima.

Data de aprovação: 5/03/2010

Conceito: BOM

Banca examinadora:

Prof.º M.Sc. Clesianu Rodrigues Lima.

Universidade Federal do Pará

Prof. M.Sc. Alacid do Socorro Siqueira Neves

Universidade Federal do Pará

Prof. Dr. Adriano Alves Rabelo

Universidade Federal do Pará

Dedico este trabalho a minha mãe Vera Maria Ribeiro Froz e as minhas irmãs Daniella Froz Neta e Daliane Froz Neta, enfim, a esta família maravilhosa que Deus me deu e que no decorrer de todos estes anos sempre me demonstraram um carinho e um amor incrível, além da força e encorajamento que lhes são peculiares. Douglas Froz Neto

AGRADECIMENTOS

Primeiramente agradeço a Deus.

A minha família por sua tão importante contribuição para minha criação.

Ao professor, orientador e amigo Clesianu Rogrigues Lima pela incondicional ajuda e colaboração para a realização deste trabalho.

Aos meus colegas de faculdade.

Aos meus amigos em geral

Aos professores da FEMAT pelos ensinamentos e valiosos conselhos.

Obrigado a todos pela grande contribuição!

RESUMO

O desempenho do processo de lingotamento contínuo influencia diretamente a qualidade do aço fabricado. Dessa forma, o principal objetivo deste trabalho é desenvolver uma estratégia de controle de bolhas e poros no tarugo do lingotamento contínuo, com medidas preventivas no processo de fabricação, como: verificação de temperatura na panela e distribuidor, análise do óleo, excesso de rinsagem, variação do nível de aço no molde, etc.. Que torna-se um dos parâmetros de controle de qualidade fundamental para evitar defeitos e internos no produto. O trabalho compreende-se com a identificação do defeito interno, através da Inspeção Off-Line. Que corresponde à análise da qualidade externa e interna do tarugo produzida na SINOBRAS, através de uma **inspeção visual** do tarugo e **macrográfica** das amostras retiradas dos mesmos. Sendo identificados possíveis defeitos para liberação ou bloqueio de peças para a utilização interna ou a venda do produto.

PALAVRAS CHAVES: Inspeção, macrografia, defeitos, lingotamento contínuo.

LISTA DE FIGURAS

FIGURA 1	Máquina de lingotamento contínuo	18
FIGURA 2	Fluxograma do processo do lingotamento contínuo	19
FIGURA 3	Desenho da uma panela com válvula gaveta	20
FIGURA 4	Carro panela nº 1 com panela em operação (posição de lingotamento)	21
FIGURA 5	de recebimento)	21
FIGURA 6	Carro panela nº 2 com panela em operação (posição de lingotamento) e carro nº1 sem panela (posição de recebimento)	21
FIGURA 7	Carro panela (posição de recebimento de panela)	22
FIGURA 8	Panela, distribuidor e moldes	23
FIGURA 9	Carro do distribuidor	24
FIGURA 10	Desenho do molde abastecido com aço líquido	25
FIGURA 1	Bico de spray tipo jato cônico	26
FIGURA 12	Câmara de spray com o veio em operação	26
FIGURA 13	³ Unidade de extração	27
FIGURA 14	Desempeno do veio	27
FIGURA 15	Pinch roll, perfil	28
FIGURA 16	Pinch roll, frente	28
FIGURA 17	Máquina de oxicorte	29
FIGURA 18	³ Tesoura hidráulica	29
FIGURA 19	Esquema de introdução da barra falsa e partida de máquina	30
FIGURA 20	Mesa de rolos	31
FIGURA 2°	Sistemas de batentes	32
FIGURA 22	2 Transferidor de tarugos	33
FIGURA 23	Réguas do leito de resfriamento	34
FIGURA 24	Esquema funcional do leito de resfriamento	35
FIGURA 25	Empilhamento dos tarugos	36
FIGURA 26	Estocagem dos tarugos	36
FIGURA 27	Exemplos de defeitos internos no tarugo	37
FIGURA 28	Bolhas tubulares no tarugo	38
FIGURA 29	Banca examinadora de tarugos	40

FIGURA 30	Máquina de serra fita horizontal. Modelo: FM 500A	41	
FIGURA 31	Amostra para macrografia	41	
FIGURA 32	Amostra para ataque químico	42	
FIGURA 33	Identificação da corrida	42	
FIGURA 34	Identificação de poros na amostra	43	
FIGURA 35:	ldentificação de bolhas tubulares na amostra	44	
FIGURA 36:	Amostra sem defeitos	48	

SUMÁRIO

	RESUMO	IX
	LISTA DE TABELAS	X
	LISTA DE FIGURAS	XI
1	INTRODUÇÃO	12
2	OBJETIVO	13
3	REVISÃO DA LITERATURA	14
3.1	SINOBRAS (SIDERÚRGICA NORTE BRASIL)	14
3.2	HISTÓRICO DO LINGOTAMENTO CONTÍNUO	14
3.3	A MÁQUINA DE LINGOTAMENTO CONTÍNUO	16
3.4	PROCESSO	19
3.4.1	Panela de Aço	19
3.4.2	Suporte da Panela de Aço	20
3.4.3	Distribuidor	22
3.4.4	Suporte do Distribuidor	24
3.4.5	Molde (RESFRIAMENTO PRIMÁRIO)	24
3.4.6	Zona de Resfriamento secundário	26
3.4.7	Extração e Desempeno	27
3.4.8	Pinch Roll	28
3.4.9	Máquina de Corte	29
3.4.10	Barra Falsa	30
3.4.11	Sistema de Transferidor de Tarugos	31
3.4.11.1	Mesa de Rolos	31
3.4.11.2	Sistema de Batentes	32
3.4.11.3	Transferidor	33
3.4.11.4	Leito de Resfriamento	34

3.4.12	Esquema Funcional do Leito de Resfriamento	35
3.4.13	Pátio de Estocagem de Tarugos	36
3.5	DEFEITOS	37
3.5.1	Defeitos Internos (Internal Defects)	37
3.5.1.1	Bolhas (PIN-HOLES) e Bolhas Tubulares (BLOW-ROLES)	37
4	MATERIAIS E MÉTODOS	40
4.1	PREPARAÇÃO DE AMOSTRAS PARA ANÁLISE MACROGRÁFICA	40
5	RESULTADO	43
5.1	IDENTIFICAÇÃO DOS DEFEITOS NA AMOSTRA	43
5.1.1	Contagem de Pin-Holes da Corrida	43
5.1.1.1	Classificação das Corridas	43
5.2.2	Contagem de Blow-holes da Corrida	44
5.2.2.1	Classificação das Corridas	44
6	CONSIDERAÇÕES FINAIS	45
6.1	ORIGEM DO DEFEITO	45
6.2	CONTRAMEDIDAS	46
6.3	COMO DETECTAR O DEFEITO	46
6.4	CONSEQÜÊNCIAS DO DEFEITO NO PRODUTO FINAL APÓS LAMINAÇÃO	46
7	SUGESTÕES PARA TRABALHOS FUTUROS	49
	BIBLIOGRAFIA	50